
aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

ETT - Electric Tubular Motor

Lineare Handling und Pick & Place Anwendungen

ACHTUNG - VERANTWORTUNG DES ANWENDERS

VERSAGEN ODER UNSACHGEMÄßE AUSWAHL ODER UNSACHGEMÄßE VERWENDUNG DER HIERIN BESCHRIEBENEN PRODUKTE ODER ZUGEHÖRIGER TEILE KÖNNEN TOD, VERLETZUNGEN VON PERSONEN ODER SACHSCHÄDEN VERURSACHEN.

- Dieses Dokument und andere Informationen von der Parker-Hannifin Corporation, seinen Tochtergesellschaften und Vertragshändlern enthalten Produkt- oder Systemoptionen zur weiteren Untersuchung durch Anwender mit technischen Kenntnissen.
- Der Anwender ist durch eigene Untersuchung und Prüfung allein dafür verantwortlich, die endgültige Auswahl des Systems und der Komponenten zu treffen und sich zu vergewissern, dass alle Leistungs-, Dauerfestigkeits-, Wartungs-, Sicherheits- und Warnanforderungen der Anwendung erfüllt werden. Der Anwender muss alle Aspekte der Anwendung genau untersuchen, geltenden Industrienormen folgen und die Informationen in Bezug auf das Produkt im aktuellen Produktkatalog sowie alle anderen Unterlagen, die von Parker oder seinen Tochtergesellschaften oder Vertragshändlern bereitgestellt werden, zu beachten.
- Soweit Parker oder seine Tochtergesellschaften oder Vertragshändler Komponenten oder Systemoptionen basierend auf technischen Daten oder Spezifikationen liefern, die vom Anwender beigestellt wurden, ist der Anwender dafür verantwortlich festzustellen, dass diese technischen Daten und Spezifikationen für alle Anwendungen und vernünftigerweise vorhersehbaren Verwendungszwecke der Komponenten oder Systeme geeignet sind und ausreichen.

Electric Tubular Motor - ETT

Übersicht	5
Technische Merkmale	7
Technische Daten	
Normen und Konformität	11
Abmessungen	
ETT - Kolbenstangenlänge / Hublänge	12
Zubehör und Optionen	16
Montagearten	16
Ausführung der Kolbenstange	
ETT mit Gleitführung	20
Feedback	22
Interner Lagegeber analog Sin/Cos	
Interner Lagesensor - TTL inkrementell	
Interner Lagegeber BISS-C	
Externer Linearencoder	22
Kabel und Stecker	23
Aufbau und Stecker ETT025 - ETT050	24
Aufbau und Stecker ETT080	24
Anwendungsbeispiele	25
Auslegungsschritte	24
Austegungssem itte	20
ETT Dimensionierung	27
Servoantriebe	20
Jei voaiiti iebe	
Bestellschlüssel	30
ETT - Electric Tubular Motor (Komplette Einheit)	30
ETT Electric Tubular Motor (nur Kolbenstange)	
ETT Electric Tubular Motor (nur Coil)	
ETT - Motor- und Signalkabel	33

Parker Hannifin

Der Weltmarktführer für Bewegungs- und Steuerungstechnik

Globale Produktentwicklung

Parker Hannifin hat mehr als 40 Jahre Erfahrung in der Entwicklung und Fertigung von Antrieben, Steuerungen, Motoren und Mechanik. Mit engagierten, global arbeitenden Produktentwicklungsteams nutzt Parker das Technologie Know-How und die Erfahrung der Entwicklerteams in Europa, Nordamerika und Asien.

Anwendungskompetenz vor Ort

Parker verfügt über lokale Entwicklungskapazitäten zur optimalen Anpassung unserer Produkte und Technologien an die Bedürfnisse der Kunden.

Offenburg, Deutschland

Littlehampton, Großbritannien

Fertigung nach Kundenbedarf

Um in den globalen Märkten auch zukünftig bestehen zu können, hat sich Parker verpflichtet, den steigenden Anforderungen der Kunden stets gerecht zu werden. Optimierte Fertigungsmethoden und das Streben nach ständiger Verbesserung kennzeichnen die Fertigung von Parker. Wir messen uns daran, inwieweit wir den Erwartungen unserer Kunden in den Bereichen Qualität und Liefertreue entsprechen. Um diesen Erwartungen immer gerecht werden zu können, investieren wir kontinuierlich in unsere Fertigungsstandorte in Europa, Nordamerika und Asien.

Lokale Fertigung und Support in Europa

Ein Netzwerk engagierter Verkaufsteams und autorisierter Fachhändler bietet Beratung und garantiert lokalen technischen Support.

Die Kontaktdaten der Verkaufsbüros finden Sie auf der Rückseite dieses Dokuments oder besuchen Sie unsere Website: www.parker.com

Filderstadt. Deutschland

Fertigungsstandorte von Elektromechanical Automation weltweit

Europa

Littlehampton, Großbritannien Dijon, Frankreich Offenburg, Deutschland Filderstadt, Deutschland Mailand, Italien

Asien

Wuxi, China Chennai, Indien

Nordamerika

Rohnert Park, Kalifornien Irwin, Pennsylvania Charlotte, North Carolina New Ulm, Minnesota

Mailand, Italien

Diion, Frankreich

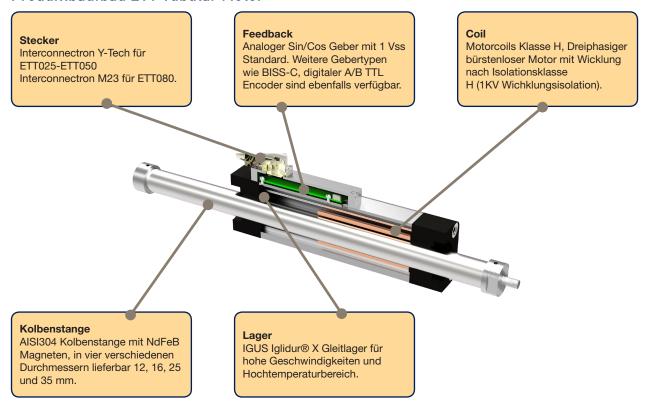
Electric Tubular Motor - ETT

Übersicht

Beschreibung

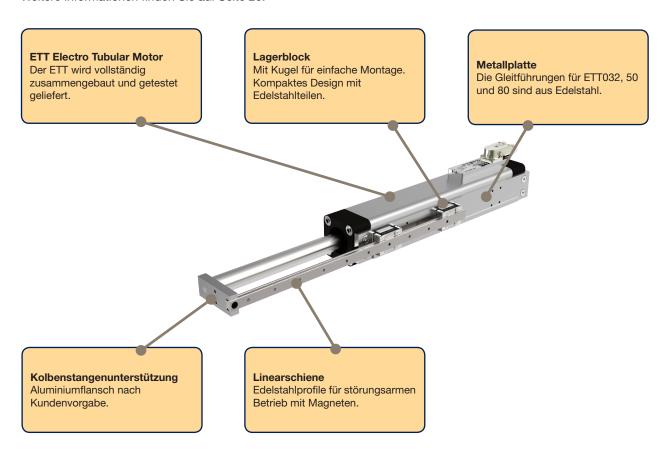
ETT ist ein direktangetriebener Linearaktuator, der sich hervorragend für alle linearen Handling- und Pick & Place-Anwendungen eignet. In Anwendungen, bei denen größte Flexibilität und Positionierfähigkeit gefragt sind, stellt er eine wirtschaftliche und energieeffiziente Alternative zu Pneumatikzylindern dar. Die lineare Bewegung des ETT wird direkt erzeugt und erfordert keine mechanischen Übertragungselemente wie Kugelumlaufspindeln, Zahnriemen oder Getriebe. Der Tubular Motor hat zwei Hauptkomponenten: die Kolbenstange und den Stator mit integriertem Geber. Die Kolbenstange besteht aus einer Edelstahlröhre mit integriertem Neodym-Magneten. die hohen Schubkräfte bis zu einer Spitzenkraft von 2083 N erzeugen können. Das Gehäuse besteht aus der Statorwicklung, der Geberelektronik und Hochleistungslagern. Hohe Einschaltdauer und hochdynamische Positionierzyklen sind ohne zusätzliche Kühlung möglich. Dies ist ein wesentlicher Vorteil des ETT. Die Ausführung in Schutzklasse IP67 erlaubt den Einsatz des ETT selbst unter schwierigen Umgebungsbedingungen.

- Hochdynamische lineare Bewegungs- und Positionssteuerung
- Idealer Ersatz für Pneumatik in Anwendungen, die eine verbesserte Positioniersteuerung erfordern
- Vier Längen und vier Profilgrößen entsprechend der Pneumatik ISO-Flanschnorm (DIN ISO 15552:2005-12) ermöglichen eine einfache mechanische Integration
- Drehbare Stecker und vielfältige Zubehöroptionen erlauben eine flexible Montage
- Reduzierte mechanische Komplexität für hohe Energieeffizienz und reduzierten Wartungsaufwand
- AISI304 Edelstahlstange für den Einsatz in "sauberen" Umgebungen
- Hohe thermische Effizienz für verbesserte Zuverlässigkeit und längere Lebensdauer
- Große Auswahl an Montagemöglichkeiten am Kolbenstangenende wie z.B. schwenkbarer Kugelkopf für mehr Flexibilität


Technische Daten - Übersicht

Motorentyp Tubular Motor	Linear tubular servo motor
Kolbenstange	AISI304 (Edelstahl)
Nennkraft	8295 N
Spitzenkraft	562083 N
Geschwindigkeitsbereich	bis zu 8 m/s
Beschleunigungsbereich	bis 350 m/s ²
Montage	Verschraubung
Wellenende	Außengewinde / Endkappe Andere Optionen möglich
Kühlung	Natürliche Belüftung
Schutzklasse (IEC60034-5)	IP67
Feedback	Analoger Hallgeber 1 Vss (SinCos 90°) Weitere Feedback Optionen auf Anfrage
Thermische Absicherung	KTY PTC oder PT1000 optional
Kennzeichnungen	CE
Versorgungsspannung	230 VAC (alle Baugrößen) 400 VAC (nur ETT80)
Temperaturklasse	Klasse F
Anschlüsse	Stecker Offene Kabelenden optional
Bidirektionale Genauigkeit	0.5 mm

Target markets

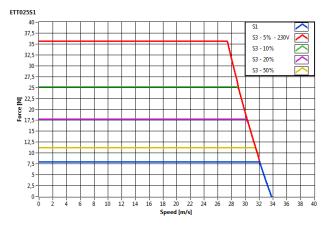

- Lebensmittel-, Pharma- & Getränkeindustrie
- Verpackungsmaschinen
- Handhabung
- Fabrikautomation

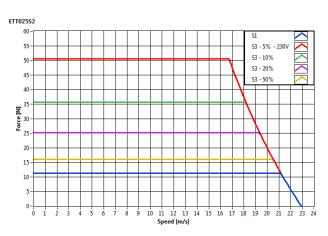
Produktbaufbau ETT Tubular Motor

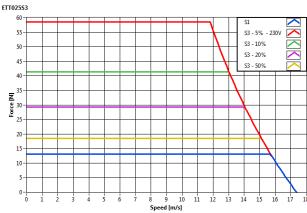
Produktbaufbau ETT Tubular Motor mit Gleitführung

Weitere Informationen finden Sie auf Seite 20.

Technische Merkmale

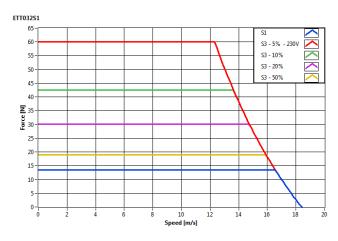

Technische Daten

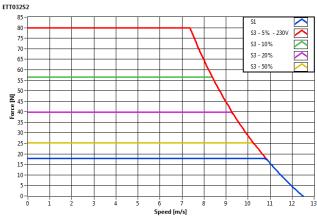

ETT025

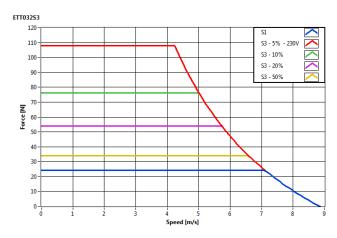

ETT025	Einheit	ETT025S1*	ETT025S2	ETT025S3*				
Spitzenkraft 1) 2) 4)	[N]	56	80	93				
Spitzenstrom	[A]	4,8	4,0					
	Ohi	ne Kühlkörper						
Kraft @ Einschaltdauer S1 1)	[N]	8	11	13				
Strom @ Einschaltdauer S1 1)	[A]	0,7	0,7	0,6				
Kraft @ Einschaltdauer S3 5% 1)	[N]	36	50	59				
Strom @ Einschaltdauer S3 5% 1)	[A]	3,0 2,9 2,6						
Kraftkonstante	[N/A]	11,80	22,95					
Gegen-EMK (Phase-Phase, effektiv)	[V _{eff} /(m/s)]	6,81	10,03	13,25				
Phasenwiderstand	[Ohm]	17,17	25,06	33,89				
Phaseninduktivität	[mH]	5,42	7,89	10,46				
Spannungsversorgung (Antriebsseitig)	VAC		230					
Zwischenkreisspannung DC Bus max.	VDC		325					
Polabstand			60					
Maximaler Hub 5)	[mm]	360						
Spitzenbeschleunigung 3)	[m/s ²]	155 220 254						
Wiederholgenauigkeit	[mm]	0,05						
Genauigkeit	[mm]		0,5					

¹⁾ Werte gelten bei 25 °C Umgebungstemperatur²⁾ Auf der Basis einer Dreiecksbewegung über den max. Hub mit Nennlast

³⁾ Auf der Basis von 100 mm Hub, ohne Nutzlast; ⁴⁾ Unter Berücksichtigung der Einschaltdauer S3 2%; ⁵⁾ Weitere Werte auf Anfrage Fertigungstoleranz ±10%; *Einschaltdauer S1 und S3 gemäß CEI EN60034-1 mit maximal 5 Minuten.

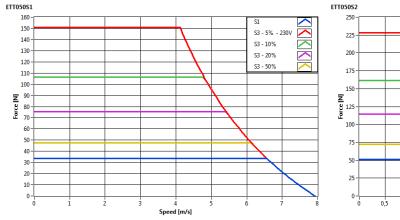

Die Diagramme gelten für Bewegung der Kolbenstange.

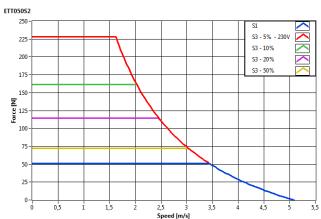

ETT032

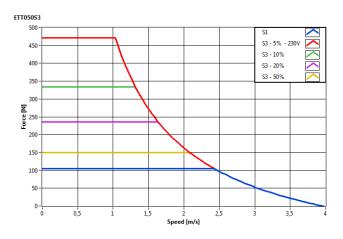

ETT032	Einheit	ETT032S1*	ETT032S2	ETT032S3*					
Spitzenkraft 1) 2) 4)	[N]	95	126	169					
Spitzenstrom	[A]	4,4	4,0	3,8					
	Ohi	ne Kühlkörper							
Kraft @ Einschaltdauer S1 1)	[N]	[N] 13 18 24							
Strom @ Einschaltdauer S1 1)	[A]	0,6	0,6	0,5					
Kraft @ Einschaltdauer S3 5% 1)	[N]	60	80	107					
Strom @ Einschaltdauer S3 5% 1)	[A]	2,8 2,5 2,4							
Kraftkonstante	[N/A]	21,67	45,05						
Gegen-EMK (Phase-Phase, effektiv)	[V _{eff} /(m/s)]	12,51	18,41	26,01					
Phasenwiderstand	[Ohm]	31,46	43,84	58,50					
Phaseninduktivität	[mH]	14,57	21,75	28,94					
Spannungsversorgung (Antriebsseitig)	VAC		230						
Zwischenkreisspannung DC Bus max.	VDC		325						
Polabstand			60						
Maximaler Hub 5)	[mm]	660	630	600					
Spitzenbeschleunigung 3)	[m/s ²]	224 258 307							
Wiederholgenauigkeit	[mm]	0,05							
Genauigkeit	[mm]		0,5						

¹⁾ Werte gelten bei 25 °C Umgebungstemperatur²⁾ Auf der Basis einer Dreiecksbewegung über den max. Hub mit Nennlast

³⁾ Auf der Basis von 100 mm Hub, ohne Nutzlast; ⁴⁾ Unter Berücksichtigung der Einschaltdauer S3 2%; ⁵⁾ Weitere Werte auf Anfrage Fertigungstoleranz ±10%; *Einschaltdauer S1 und S3 gemäß CEI EN60034-1 mit maximal 5 Minuten.

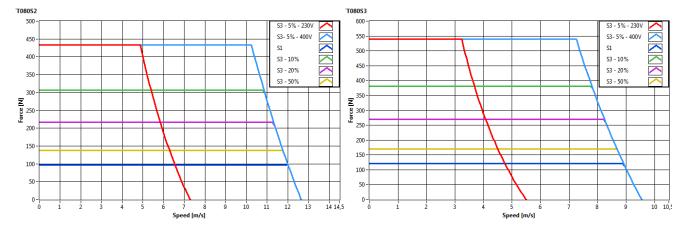

Die Diagramme gelten für Bewegung der Kolbenstange.

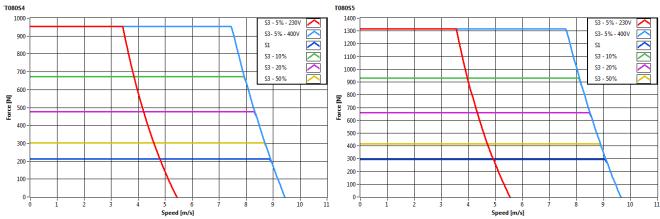

ETT050


ETT050	Einheit	ETT050S1*	ETT050S2	ETT050S3*				
Spitzenkraft 1) 2) 4)	[N]	238	361	746				
Spitzenstrom	[A]	4,7	4,6	7,4				
	Oh	ne Kühlkörper						
Kraft @ Einschaltdauer S1 1)	[N]	34	51	106				
Strom @ Einschaltdauer S1 1)	[A]	0,7	0,7	1,1				
Kraft @ Einschaltdauer S3 5% 1)	[N]	151	228	472				
Strom @ Einschaltdauer S3 5% 1)	[A]	3,0 2,9 4,7						
Kraftkonstante	[N/A]	50,30	78,55	100,53				
Gegen-EMK (Phase-Phase, effektiv)	[V _{eff} /(m/s)]	41,07	64,13	82,08				
Phasenwiderstand	[Ohm]	42,41	62,70	58,04				
Phaseninduktivität	[mH]	23,55	34,70	22,70				
Spannungsversorgung (Antriebsseitig)	VAC		230					
Zwischenkreisspannung DC Bus max.	VDC		325					
Polabstand			60					
Maximaler Hub 5)	[mm]	720	690	540				
Spitzenbeschleunigung 3)	[m/s ²]	199 264 337						
Wiederholgenauigkeit	[mm]	0,05						
Genauigkeit	[mm]		0,5					

¹⁾ Werte gelten bei 25 °C Umgebungstemperatur²⁾ Auf der Basis einer Dreiecksbewegung über den max. Hub mit Nennlast

³⁾ Auf der Basis von 100 mm Hub, ohne Nutzlast; ⁴⁾ Unter Berücksichtigung der Einschaltdauer S3 2%; ⁵⁾ Weitere Werte auf Anfrage Fertigungstoleranz ±10%; *Einschaltdauer S1 und S3 gemäß CEI EN60034-1 mit maximal 5 Minuten.


Die Diagramme gelten für Bewegung der Kolbenstange.

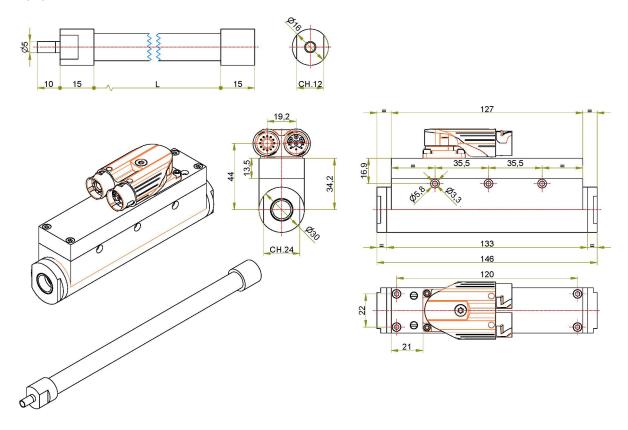

ETT080

ETT080 Stromversorgung 230-400 VAC	Einheit	ETT080S2	ETT080S3*	ETT080S4	ETT080S5			
Spitzenkraft 1) 2) 4)	[N]	686	852	1506	2083			
Spitzenstrom	[A]	12,5	11,7	20,5	29,0			
	Oh	ne Kühlkörper						
Kraft @ Einschaltdauer S1 1)	[N]	97	120	213	295			
Strom @ Einschaltdauer S1 1)	[A]	1,8	1,7	2,9	4,1			
Kraft @ Einschaltdauer S3 5% 1)	[N]	434	539	952	1318			
Strom @ Einschaltdauer S3 5% 1)	[A]	7,9	7,4 13,0		18,3			
Kraftkonstante	[N/A]	54,80	72,57 73,44		71,88			
Gegen-EMK (Phase-Phase, effektiv)	[V _{eff} /(m/s)]	31,64	59,26 42,4		41,5			
Phasenwiderstand	[Ohm]	11,14	14,81	7,65	5,25			
Phaseninduktivität	[mH]	12,80	17,06	7,50	5,51			
Spannungsversorgung (Antriebsseitig)	VAC		230/	400				
Zwischenkreisspannung DC Bus max.	VDC		325/	′566				
Polabstand			6	0				
Maximaler Hub 5)	[mm]	736	706	586	460			
Spitzenbeschleunigung 3)	[m/s ²]	238	264	330	352			
Wiederholgenauigkeit	[mm]	0,05						
Genauigkeit	[mm]		0,	5				

¹⁾ Werte gelten bei 25 °C Umgebungstemperatur²⁾ Auf der Basis einer Dreiecksbewegung über den max. Hub mit Nennlast

³⁾ Auf der Basis von 100 mm Hub, ohne Nutzlast; ⁴⁾ Unter Berücksichtigung der Einschaltdauer S3 2%; ⁵⁾ Weitere Werte auf Anfrage Fertigungstoleranz ±10%; *Einschaltdauer S3 gemäß CEI EN60034-1 bei maximal 5 Minuten.

Kurven basieren auf Wegbewegung.


Normen und Konformität

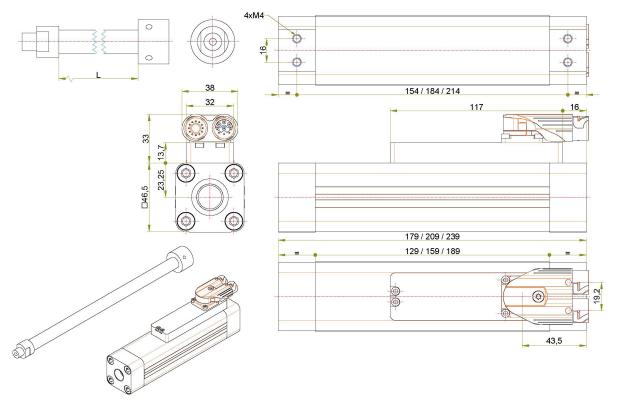
Niederspannungsrichtlinie								
	• 2006/95/EC							
EMV Richtlinie								
	• 2004/108/EC							
Elektromagnetische Verträglichk	ceit von Betriebsmitteln							
	• DIN EN 61000-6-4:2007							
Störfestigkeit in industrieller Um	Störfestigkeit in industrieller Umgebung							
	• DIN EN 61000-6-2:2006							

Kennzeichnung (ξ

Abmessungen

ETT025

ETT - Kolbenstangenlänge / Hublänge

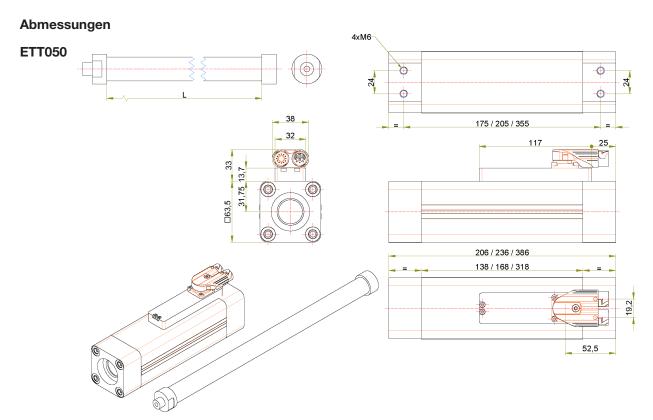

ETT025

Artikelnummer		stange F"		Kolbenstange "N"		Kolbenstange "M"		istange G"	Hub		
Codierung	Länge [mm]	Gewicht [kg]	Länge [mm]	Gewicht [kg]	Länge [mm]	Gewicht [kg]	Länge [mm]	Gewicht [kg]	S1 [mm]	S2 [mm]	S3 [mm]
0205	204	0,216	216	0,216	206	0,216	212	0,217	20	20	20
0215	214	0,23	226	0,23	216	0,23	222	0,231	30	30	30
0245	244	0,271	256	0,271	246	0,271	252	0,272	60	60	60
0275	274	0,311	286	0,311	276	0,311	282	0,312	90	90	90
0305	304	0,352	316	0,352	306	0,352	312	0,353	120	120	120
0335	334	0,393	346	0,393	336	0,393	342	0,394	150	150	150
0365	364	0,434	376	0,434	366	0,434	372	0,435	180	180	180
0395	394	0,475	406	0,475	396	0,475	402	0,476	210	210	210
0425	424	0,515	436	0,515	426	0,515	432	0,516	240	240	240
0455	454	0,556	466	0,556	456	0,556	462	0,557	270	270	270
0485	484	0,597	496	0,597	486	0,597	492	0,598	300	300	300
0515	514	0,638	526	0,638	516	0,638	522	0,639	330	330	330
0545	544	0,679	556	0,679	546	0,679	552	0,68	360	360	360
							Coil Gev	vicht [kg]	0,5	0,5	0,6

Max. zulässige Kolbenstangenlänge 750 mm.

Abmessungen

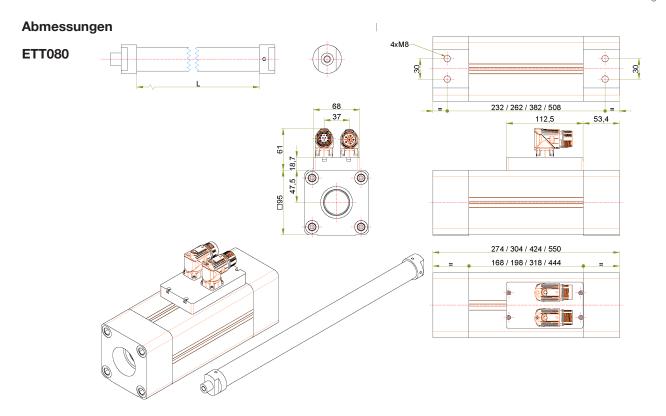
ETT032



ETT - Kolbenstangenlänge / Hublänge

ETT032

Artikelnummer	Kolbenstange "F"		Kolbenstange "N"			Kolbenstange "M"		istange G"	Hub		
Codierung	Länge	Gewicht	Länge	Gewicht	Länge	Gewicht	Länge	Gewicht	S1	S2	S3
	[mm]	[kg]	[mm]	[kg]	[mm]	[kg]	[mm]	[kg]	[mm]	[mm]	[mm]
0221	227	0,185	239	0,184	228	0,184	237	0,186	30		
0251	257	0,227	269	0,226	258	0,226	267	0,228	60	30	
0281	287	0,268	299	0,267	288	0,267	297	0,269	90	60	30
0311	317	0,31	329	0,309	318	0,309	327	0,311	120	90	60
0341	347	0,352	359	0,351	348	0,351	357	0,353	150	120	90
0371	377	0,394	389	0,393	378	0,393	387	0,395	180	150	120
0401	407	0,436	419	0,435	408	0,435	417	0,437	210	180	150
0431	437	0,478	449	0,477	438	0,477	447	0,479	240	210	180
0461	467	0,519	479	0,518	468	0,518	477	0,52	270	240	210
0491	497	0,561	509	0,56	498	0,56	507	0,562	300	270	240
0521	527	0,603	539	0,602	528	0,602	537	0,604	330	300	270
0551	557	0,645	569	0,644	558	0,644	567	0,646	360	330	300
0581	587	0,687	599	0,686	588	0,686	597	0,688	390	360	330
0611	617	0,729	629	0,728	618	0,728	627	0,73	420	390	360
0641	647	0,771	659	0,77	648	0,77	657	0,772	450	420	390
0671	677	0,812	689	0,811	678	0,811	687	0,813	480	450	420
0701	707	0,854	719	0,853	708	0,853	717	0,855	510	480	450
0731	737	0,896	749	0,895	738	0,895	747	0,897	540	510	480
0761	767	0,938	779	0,937	768	0,937	777	0,939	570	540	510
0791	797	0,98	809	0,979	798	0,979	807	0,981	600	570	540
0821	827	1,022	839	1,021	828	1,021	837	1,023	630	600	570
0851	857	1,063	869	1,062	858	1,062	867	1,064	660	630	600
Max zulässiga Ka							Coil Gev	vicht [kg]	0,89	1,01	1,16

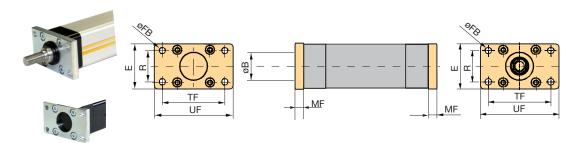

Max. zulässige Kolbenstangenlänge 1250 mm.

ETT - Kolbenstangenlänge / Hublänge ETT050

Artikelnummer		stange F"		istange V"		nstange VI"		nstange G"	Hub		
Codierung	Länge [mm]	Gewicht [kg]	Länge [mm]	Gewicht [kg]	Länge [mm]	Gewicht [kg]	Länge [mm]	Gewicht [kg]	S1 [mm]	S2 [mm]	S3 [mm]
0254	254	0,759	274	0,758	259	0,758	264	0,76	30		
0284	284	0,866	304	0,865	289	0,865	294	0,867	60	30	
0314	314	0,973	334	0,972	319	0,972	324	0,974	90	60	
0344	344	1,08	364	1,079	349	1,079	354	1,081	120	90	
0374	374	1,187	394	1,186	379	1,186	384	1,188	150	120	
0404	404	1,294	424	1,293	409	1,293	414	1,295	180	150	
0434	434	1,401	454	1,4	439	1,4	444	1,402	210	180	30
0464	464	1,508	484	1,507	469	1,507	474	1,509	240	210	60
0494	494	1,614	514	1,613	499	1,613	504	1,615	270	240	90
0524	524	1,721	544	1,72	529	1,72	534	1,722	300	270	120
0554	554	1,828	574	1,827	559	1,827	564	1,829	330	300	150
0584	584	1,935	604	1,934	589	1,934	594	1,936	360	330	180
0614	614	2,042	634	2,041	619	2,041	624	2,043	390	360	210
0644	644	2,149	664	2,148	649	2,148	654	2,15	420	390	240
0674	674	2,256	694	2,255	679	2,255	684	2,257	450	420	270
0704	704	2,363	724	2,362	709	2,362	714	2,364	480	450	300
0734	734	2,47	754	2,469	739	2,469	744	2,471	510	480	330
0764	764	2,576	784	2,575	769	2,575	774	2,577	540	510	360
0794	794	2,683	814	2,682	799	2,682	804	2,684	570	540	390
0824	824	2,79	844	2,789	829	2,789	834	2,791	600	570	420
0854	854	2,897	874	2,896	859	2,896	864	2,898	630	600	450
0884	884	3,004	904	3,003	889	3,003	894	3,005	660	630	480
0914	914	3,111	934	3,11	919	3,11	924	3,112	690	660	510
0944	944	3,218	964	3,217	949	3,217	954	3,219	720	690	540
							Coil Gev	wicht [kg]	1,54	1,765	3,005

Max. zulässige Kolbenstangenlänge 1500 mm.

ETT - Kolbenstangenlänge / Hublänge ETT080


Artikelnummer		nstange F"		nstange N"		nstange M"		nstange G"		Hub		
Codierung	Länge	Gewicht	Länge	Gewicht	Länge	Gewicht	Länge	Gewicht	S2	S3	S4	S5
	[mm]	[kg]	[mm]	[kg]	[mm]	[kg]	[mm]	[kg]	[mm]	[mm]	[mm]	[mm]
0338	338	1,99	362	1,99	350	2,00	354	2,00	46			
0368	368	2,20	392	2,20	380	2,22	384	2,22	76	46		
0398	398	2,42	422	2,42	410	2,43	414	2,43	106	76		
0428	428	2,63	452	2,63	440	2,64	444	2,64	136	106		
0458	458	2,84	482	2,84	470	2,85	474	2,85	166	136		
0488	488	3,05	512	3,05	500	3,07	504	3,07	196	166	46	
0518	518	3,27	542	3,27	530	3,28	534	3,28	226	196	76	
0548	548	3,48	572	3,48	560	3,49	564	3,49	256	226	106	
0578	578	3,69	602	3,69	590	3,71	594	3,71	286	256	136	
0608	608	3,90	632	3,90	620	3,92	624	3,92	316	286	166	40
0638	638	4,12	662	4,12	650	4,13	654	4,13	346	316	196	70
0668	668	4,33	692	4,33	680	1,34	684	4,34	376	346	226	100
0698	698	4,54	722	4,54	710	4,56	714	4,56	406	376	256	130
0728	728	4,75	752	4,75	740	4,77	744	4,77	436	406	286	160
0758	758	4,97	782	4,97	770	4,98	774	4,98	466	436	316	190
0788	788	5,18	812	5,18	800	5,19	804	5,19	496	466	346	220
0818	818	5,39	842	5,39	830	5,41	834	5,41	526	496	376	250
0848	848	5,60	872	5,60	860	5,62	864	5,62	556	526	406	280
0878	878	5,82	902	5,82	890	5,83	894	5,83	586	556	436	310
0908	908	6,03	932	6,03	920	6,04	924	6,04	616	586	466	340
0938	938	6,24	962	6,24	950	6,26	954	6,26	646	616	496	370
0968	968	6,45	992	6,45	980	6,47	984	6,47	676	646	526	400
0998	998	6,67	1022	6,67	1010	6,68	1014	6,68	706	676	556	430
1028	1028	6,88	1052	6,88	1040	6,89	1044	6,89	736	706	586	460
							Coil Gev	wicht [kg]	4,4	5	7	9,55

Max. zulässige Kolbenstangenlänge 1750 mm

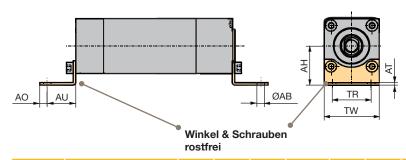
Zubehör und Optionen

Montagearten

Front- und Endplatte

Abmessungen Front- und Endplatte

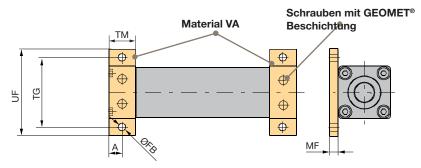
	Artikel Nr. (1 Stück)	UF	E	TF	ØFB	R	MF	ØB
		[mm]						
ETT032	0112.918	80	48	64	7	32	10	30
ETT050	0122.918	110	65	90	9	45	12	40
ETT080	0132.918	150	95	126	12	63	16	60


Ersatzteile werden mit passenden Montageschrauben geliefert.

Die Artikelnummer beinhaltet 1 Stück.

Montagewinkel




	Artikel Nr. Montagewinkel 1 Stück	АН	AT	TR	ØAB (H14)	AO	AU	TW
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ETT032	0112.916	32	4	32	7	8	24	46,5
ETT050	0122.916	44	4	45	9	12	32	63,5
ETT080	0132.916	47	6	72	13,5	15	41	95

Ersatzteile werden mit passenden Montageschrauben geliefert.

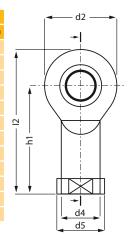
* Für Ausführungen in Schutzklasse empfehlen wir Schrauben mit GEOMET® Beschichtung (Dünnschichtkorrosionsschutz).

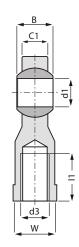
Montageplatten

	Artikel Nr. (2 Stück)	TG	UF	ØFB	TM	MF	Α
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
ETT032	0112.917E	62	78	6,6	25	8	12,5
ETT050	0122.917E	84	104	9	30	10	15
ETT 080	0132.917E	120	144	13,5	40	12	20

Ersatzteile werden mit passenden Montageschrauben geliefert.

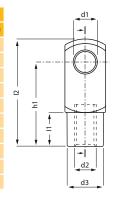
* Für Ausführungen in Schutzklasse empfehlen wir Schrauben mit GEOMET® Beschichtung (Dünnschichtkorrosionsschutz).

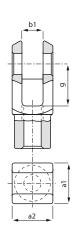

Ausführung der Kolbenstange


Schwenkbarer Kugelkopf aus Kunststoff

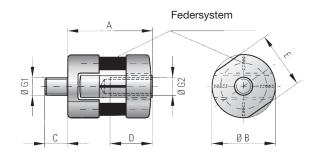
1	KB	RM-	16	
	ı		ı	
	и		1	

KBRM -05 -06 -08 -10 ETT025 ETT032 ETT050 ETT080 d1 E10 5 6 8 10 d2 18 20 24 30 d3 M5 M6 M8 M10 d4 9,0 10,0 13,0 15 d5 12,0 13,0 16,0 19 C1 6,0 7,0 9,0 10,5 В 8 9 12 14 h1 27 36 30 43 11 10 12 16 20 12 36 40 48 58 W SW09 SW11 SW14 SW17 **Teilung** 30° 29° 25° 25°


hergestellt von igus®


Kunststoff-Gabelkopf

GERM	-05	-06	-08	-10
	ETT025	ETT032	ETT050	ETT080
d1 н9	5	6	8	10
g h11	12	12	16	20
a1 +0,3 / -0,16	12	12	16	20
a2 +0,3 / -0,16	12	12	16	20
b1 B13	6	6	8	10
d2 6н *	M5	M6	M8	M10
d3 +0,3 / -0,3	10,0	10,0	14,0	18,0
12 +0,5 / -0,5	31,0	31,0	42,0	52,0
h1 +0,3 / -0,3	24,0	24,0	32,0	40,0
I1 +0,2 / -0,2	9,0	9,0	12,0	15,0



hergestellt von igus®

Flexible Kupplung

LK	70	150	300	500
	ETT025	ETT032	ETT050	ETT080
Druckkraft [N]	70	150	300	500
A	24	33	41,5	52
В	18	22	30	42
G1/2	M5	M6	M8	M10
G1/2* [Nm]	4	7	18	30
C	6,5	8	10	13
D	10	12	16	20
E	16	20	27	38
Masse [g]	11	23	57	135
Seitliche Rückstellkraft (max) (N)	10	18	48	96
Seitlich (max) [mm]	0,5	0,5	0,5	0,7
Winkel (max)	1,5°	1,5°	1,5°	1,5°

^{*} Max. Anzugsmoment Gewinde

Die Größen der flexiblen Kupplungen sind nach Dauerkraft des ETT geordnet. Für Informationen über weitere Kraftoptionen kontaktieren Sie bitte Parker

Dichtringe

Die ETT Motoren können mit einem Dichtring zum Schutz der Coil vor Verschmutzungen, Spritzwasser oder übermäßigem Schmiermittelverlust ausgestattet werden; so wird die Lebensdauer erhöht.

Dichtringe in spezieller Ausführung				
Material	Thermoplastisches Polyurethan-Elastomer			
Farbe	Grün			
Temperaturbereich	Von - 30 °C bis + 100 °C			
Härte	47 ± Grad D			
Alterungsbeständigkeit				
Licht	Sehr gut			
Ozon	Gut			
Medienbeständigkeit Mineralöle, Fette	Ja*			
Hochgradig vermischte/ synthetische Schmiermittel	Nein*			
Aggressiv	Nein*			

Bei Verwendung von Dichtringen ändern sich einige Anforderungen des ETT:

- Kolbenstange muss mit Schmierfett Typ RHEOSIL 500F geschmiert werden
- Geschwindigkeit ist auf 3 m/s max begrenzt
- Temperaturbereich von -30 °C bis 100 °C
- Kolbenstangenhub verringert sich
- rotierende Bewegungen sind nicht erlaubt
- Kolbenstange muss sauber gehalten werden

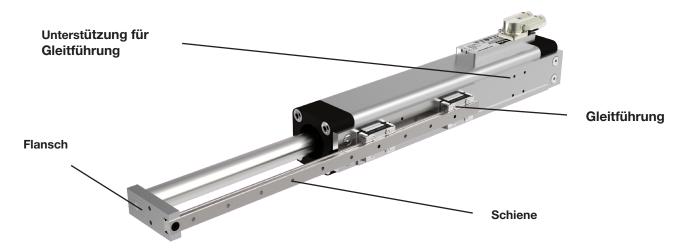
^{*}Wenden Sie sich bitte an Ihr Vertriebsbüro

ETT mit Gleitführung

Da das System auf Polymer-Gleitlagern basiert, kann die Motorwelle nur geringe radiale Lasten aufnehmen. Die Gleitführung des ETT Motors ist die ideale Lösung für Anwendungen, bei denen seitliche Kräfte auftreten und die eine Verdrehsicherung benötigen.

Zwei unterschiedliche Konfigurationen sind lieferbar:

ETT mit Gleitführung für Kolbenstangenbewegung



ETT mit Coil Bewegung für lange Hübe und schwere Lasten

Bei beiden Lösungen sind externe Stehlager, Schienen und Kolbenstangen für einen jeweiligen Anwendungszweck eingesetzt. Zur Erhöhung der Präzision und Wiederholgenauigkeit können externe lineare Feedback-Systeme montiert werden. Bei Coil-Bewegungen ist es ratsam, die Gleitlager zu entfernen, bei langen Hüben ist es unbedingt notwendig.

Aufbau der Gleitführung

	Schiene			Gleitfü	hrung
Baureihe	ETT-LR	Schiene optional	Baureihe	ETT-LC	Gleitführung optional
Schienentyp	1	Тур NB	Schienentyp	1	Typ NB
	025	n.a.		025	n.a.
ETT	032	Konstruiert für Motorgröße 032 - 9 mm	— ETT	032	Konstruiert für Motorgröße 032 - 9 mm
Motorgröße	050	Konstruiert für Motorgröße 050 - 15 mm	Motorgröße	050	Konstruiert für Motorgröße 050 - 15 mm
	080	Konstruiert für Motorgröße 080 - 20 mm		080	Konstruiert für Motorgröße 080 - 20 mm
Länge	XXX	* Siehe Tabelle Kolbenstangenlänge			
	Flansch			Unteret	ützung für Gleitführung
Baureihen	ETT-LF	Flansch-Option	Baureihe	ETT-LA	Metallunterstützung für Gleitführung
Flanschseite	F	Flansch vorn		025	optional n.a.
1 Idiloonoono	R	Flansch hinten			
	025	n.a.	ETT	032	Konstruiert für Motorgröße 032 - 9 mm
ETT	032	Konstruiert für Motorgröße 032 - 9 mm	Motorgröße	050	Konstruiert für Motorgröße 050 - 15 mm
Motorgröße	050	Konstruiert für Motorgröße		080	t.b.d.
	080	050 - 15 mm Konstruiert für Motorgröße		S1	Wicklung: Seriell, Stacklänge 1 - nicht für Größe 080 lieferbar
		080 - 20 mm		S2	Wicklung: Seriell, Stacklänge 2
			l än ma	S3	Wicklung: Seriell, Stacklänge 3
			Länge	S4	Wicklung: Seriell, Stacklänge 4 - nur Größe 080
				S5	Wicklung: Seriell, Stacklänge 5 - nur für Größe 080

ETT Motoren mit Gleitführung können fertig montiert und getestet als komplettes System geliefert werden. Der Aufbau der Gleitführung führt aufgrund zusätzlich bewegter Masse und Reibung zu einer Leistungsverringerung des ETT.

Der ETT mit Gleitführung ist die ideale Lösung zur einfachen Integration in Pick-and-place Portale und alle gängigen Handhabungsgeräte.

Feedback

Interner Lagegeber analog Sin/Cos

Der Lagegeber gibt analoge Sinus und Cosinus Differenzsignale für die Positionsregelung aus. In der unten stehenden Tabelle sind die Hauptmerkmale des Sin/Cos Feedbacksystems aufgezeigt.

	ETT025	ETT032	ETT050	ETT080
Polabstand [mm]	60	60	60	60
Ausgangsstrom [mA]	50	50	50	50
Versorgungsspannung [Vdc]	5 ± 0,25			
Versorgungsstrom [mA]	40 ± 10%			
Wiederholgenauigkeit bis zu [µm]	±50			

Interner Lagesensor - TTL inkrementell

Die Ausgänge des inkrementellen Lagesensors haben TTL Leitungstreibersignale, A und B, /A und /B ohne Nullspur. Die Auflösung ist programmierbar und der Standardwert ist 2048 Inkremente.

	ETT025	ETT032	ETT050	ETT080
Polabstand [mm]	60	60	60	60
Ausgangssignale		А, В,	/A, /B	
Versorgungsspannung [VDC]	5 ± 0,25			
Versorgungsstrom [mA]	100 ± 10%			
Wiederholgenauigkeit bis zu [µm]	±50			
Auflösung mit 2048 Inkrementen [µm]	29,3			
Systemgenauigkeit [mm]	emgenauigkeit [mm] ±0,5			
Linearitätsfehler	< 1%			
Max Auflösung	24 Bit			

Interner Lagegeber BISS-C

Das interne Feedbacksystem bietet eine BISS-C Interface-Option. Die Elektronikplatine beinhaltet einen integrierten Lagegeber, Interpolationselektronik und Motorparameter als elektronisches Datenblatt (EDS).

	ETT025	ETT032	ETT050	ETT080
Polabstand [mm]	60	60	60	60
Ausgangssignale		BISS-C RS	8485 seriell	
Versorgungsspannung [VDC]	5 ± 0,25			
Versorgungsstrom [mA]	100 ± 10%			
Wiederholgenauigkeit bis zu [µm]	±50			
Auflösung mit 2048 Inkrementen [µm]	29,3			
Systemgenauigkeit [mm] ±0,5				
Linearitätsfehler < 1			1%	
Max Auflösung	8192 Inkremente			

Externer Linearencoder

Um höchste Genauigkeit zu erreichen ist der Linearencoder das gängigste Feedbacksystem für die Positionierung von Linearmotoren. Es gibt ihn in zwei Ausführungen; magnetisch und optisch.

MSK500010KE1	Inkrementelle, digitale Schnittstelle, Auflösung 1 μm
	Magnetischer Encoder
	Max. Auflösung bis zu 1 μm
	Wiederholgenauigkeit ±0,01 mm
	LED Statusanzeige
	Arbeiten mit magnetischem Band MB500
	Einlese Distanz bis 2 m
LIC 2117	Abolut, EnDat-Schnittstelle, Auflösung 0,1 µm
	Optischer Encoder
	• Max. Auflösung bis zu 0,1 μm
	• Wiederholgenauigkeit: ±15 μm
	• EnDat2.2
	Einlese Distanz bis 3 m

Kabel und Stecker

Alle Kabelsätze sind optimal auf unsere Servoprodukte abgestimmt. Die Eigenschaften der Kabel beinhalten: Geringe Haftung, halogenfrei und flammhemmend gemäß den Anforderungen nach DIN VDE 0472. Ölbeständig, fett-, kühlmittel- und schmiermittelbeständig.

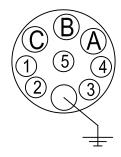
Leistungskabel Motor

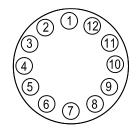
Тур	ETT-CAP
Kabelkonstruktion	
Leitermaterial	Kupferlitzen
Kernaufbau	(3 + T) x 1,5 mm2
Kerndämmung	TEO-Flexene®
Außenlagen	Polyurethan
Mantelfarbe	RAL2003 orange

Technische Daten

Nennspannung	. 600/1000 V
Durchschlagfestigkeit	. 4000 V
Isolationswiderstand	> 2500 MOhm x km
Min. Biegeradius	7,5 x Durchmesser der freitragender Kette 10 x Durchm., langer Verfahrweg
Max. Geschwindigkeit	240 m/min.
Max. Beschleunigung	20 m/sec ²
Zyklus	10000000
Betriebstemperatur	-30 + 80 °C
Außendurchmesser	8,5 mm

Signalkabel Motor


Тур	ETT-CAS
Kabelkonstruktion	
Leitermaterial	Kupferlitzen
Kernaufbau	[3x(2x0,14 SK)+2x(0,50 SK)] SK
Kerndämmung	TPE-E
Außenlagen	Polyurethan
Mantelfarbe	RAL6018 grün

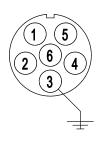

Technische Daten

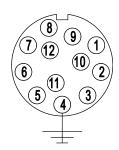
Teomisone Baten		
Nennspannung	30 V	
Durchschlagfestigkeit	1500 V	
Isolationswiderstand	> 10 MOhm x km	
Min. Biegeradius	90 mm	
Max. Geschwindigkeit	240 m/min.	
Max. Beschleunigung	20 m/sec ²	
Zyklus	≥ 5000000	
Betriebstemperatur	-30 + 80 °C	
Außendurchmesser	8,4 mm	

Aufbau und Stecker ETT025 - ETT050

Leistungsanschluss

Pin	Beschreibung
Α	U
В	W
С	V
PE	PE
1	n.c.
2	n.c.
3	n.c.
4	n.c.
5	n.c.


Тур	
CONMOTYF	Buchse


Feedbackanschluss

Pin	Beschreibung
1	COS -
2	COS +
3	n.c.
4	KTY84 -
5	KTY84 +
6	n.c.
7	SIN -
8	SIN +
9	n.c.
10	+5 V
11	n.c.
12	GND - Schirm

Тур	
CONRESYF	Buchse

Aufbau und Stecker ETT080

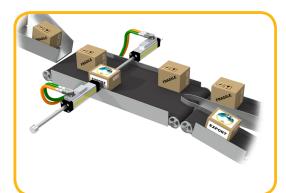
Leistungsanschluss

Pin	Beschreibung
1	U
2	V
3	GND - Schirm
4	n.c.
5	n.c.
6	W

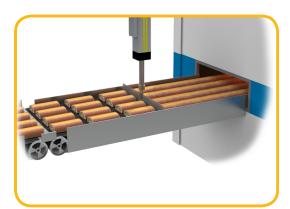
Typ	
21:	
CONMOT82F	Buchse

Feedbackanschluss

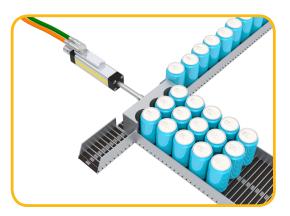
Pin	Beschreibung
1	SIN -
2	SIN +
3	n.c.
4	GND - Schirm
5	n.c.
6	n.c.
7	EXCT -
8	KTY -
9	KTY +
10	EXCT +
11	COS +
12	COS -


Тур	
CONRES82F	Buchse

Anwendungsbeispiele


Stapeln

Mithilfe des ETTs werden die CD's nach dem Drucken gestapelt. Ein ETT ersetzt eine aufwendige Kombination aus Zahnriemenachse. Getriebe und Motor und reduziert den Montageaufwand erheblich.


Sortieren

Ein Überwachungssystem erkennt die verschiedenen Boxen. Mit Hilfe zweier synchron betriebener ETT's werden die Boxen auf verschiedene Bänder sortiert. Die hohe Dynamik des ETT's steigert die Leistung des Systems erheblich.

Schneiden

In dieser Applikation wird der ETT als fliegendes Messer eingesetzt. Aufgrund der hohen Kraft und der Möglichkeit sich auf das Förderband zu synchronisieren ist diese Applikation einfach zu realisieren. Die Schnittlänge kann einfach und schnell angepasst werden.

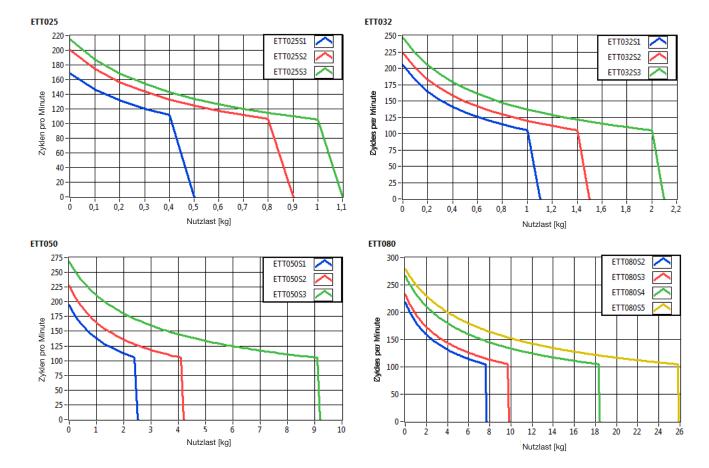
Formatieren

Der ETT wird eingesetzt, um Produkte auf dem Förderband wiederholgenau zu formatieren. Diese flexible, dynamische Positionierung des ETT garantiert perfektes Justieren verschiedener Produktformate. Gleichzeitig werden weniger Komponenten benötigt, was die Energieeffizienz deutlich verbessert.

Auslegungsschritte

Mit den nachfolgenden Auslegungsschritten finden Sie den passenden ETT Motor.

- 1. Wählen Sie mit abgeschätzten Applikationsdaten einen ETT Motor aus.
- 2. Berechnen Sie mit nachfolgend beschriebenen Auslegungsschritten die tatsächlich benötigten Applikationsdaten.
- 3. Überschreiten die Anforderungen Ihrer Applikation einen Maximalwert, dann wählen Sie einen größeren Elektrozylinder und prüfen Sie bitte die Maximalwerte erneut. Eventuell kann auch ein kleinerer ETT Motor die Anforderungen erfüllen.


Schritt	Anwendungsdaten	Auslegung
1	Genauigkeit, Umgebungsbedingungen	Prüfen Sie die Rahmenbedingungen für den Einsatz des ETT in Ihrer Applikation.
2	Platzbedarf	Prüfen Sie den in Ihrer Applikation verfügbaren Platz und wählen Sie die Motoroption: Kolbenstangenbewegung oder Coil-Bewegung
3	Hub wählen	Auswahl des gewünschten Hubes: Benötigten Hub aus Nutzhub und Sicherheitswegen ermitteln aus der Liste der Vorzugshübe den nächstgrößen Hub auswählen oder falls die gewünschte Hublänge nicht vorhanden ist: Nutzhublänge in mm-Schritten festlegen. Achtung! Minimal und maximal möglichen Hub beachten
4	Maximal benötigte Kraft	Ermitteln der maximal benötigten axialen Kraft (Zug- und Druckkraft). unter Berücksichtigung der Einschaltdauer
5	Wählen Sie die Anbauposition	Prüfen Sie, ob die Ausrichtung des ETT vertikal oder horizontal ist
6	Maximale Geschwindigkeit	Wahl der maximal benötigten Geschwindigkeit für die Anwendung
7	Anwendungszyklus	Prüfen Sie bitte den Anwendungszyklus
8	Zulässige Druckkraft wegen Knickgefahr	Prüfen der maximalen Druckkraft, abhängig von Hub und Montageart.
10	Zulässige Seitenkraft	Ermitteln Sie die Seitenkräfte Ihrer Applikation und prüfen Sie diese gegen die zulässigen Seitenkräfte (hubabhängig)
11	Montageart	Auswahl des ETT Montagezubehörs
12	Kolbenstangenanschluss	Auswahl der Kolbenstangenbefestigung

Die korrekt Auswahl eines ETT Motors wird durch das Dimensionierungstool "ETTsizing" erleichtert. Sie finden es unter folgendem Link: www.ettsizing.eu

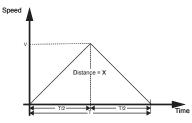
ETT Dimensionierung

Die folgenden Diagramme zeigen die Abhängigkeit von Nutzlast und erreichbarer Anzahl von Zyklen pro Minute unter folgenden Voraussetzungen: - Hub 90 mm, - Dreiecksprofil, - Zyklus S3 – 5%, - ohne Vorschubkraft. Diese Darstellung gilt nur für die angenommen Randbedingungen.

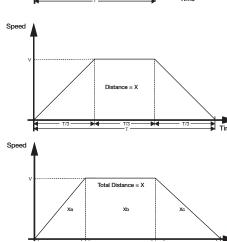
Diese müssen in der Applikation gültig sein, andernfalls muss die Applikation auf herkömmliche Weise berechnet werden.

Allgemeine Bewegungsprofile

Dreiecksprofil 1/2, 1/2

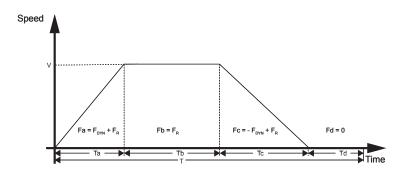

Bei kurzen und dynamischen Hüben wird häufig im Dreiecksprofil ohne konstant-Drehzahlphase verfahren.

Dies ist sehr einfach und wird bei Pick & Place Anwendungen oft angewandt.


Trapezprofil

Auf eine konstante Geschwindigkeit beschleunigen, mit konstanter Geschwindigkeit fahren und dann wieder auf Originalgeschwindigkeit oder Null abbremsen. Dies wird oft bei größeren Verfahrwegen angewandt. Es gibt zwei Typen, das 1/3 Trapezprofil und das Trapezprofil mit variabler Konstantphase.

	Symbol	Einheit
Hub	X	mm
Geschwindigkeit	V	m/s
Beschleunigungszeit	T _a	S
Dauerbetrieb	T _b	S
Verzögerungszeit	T _c	S
Einschwingzeit	T _s	S
Wartezeit	T _w	S



Gegeben Gesucht	X (m) T (sec)	V (m/sec) T (sec)	A (m/sec ₂) T (sec)	A (m/sec ₂) V (m/sec)
Distanz X(m)		X= (1/2) * V * T	X= (1/4) * A * T2	X= (V2/A)
Geschwindigkeit V (m/sec)	V= 2* (X/T)		V= (A*T)/2	V= √(A*X)
Beschleunigung A (m/sec2)	A= 4* (X/T2)	A= 2 * (V/T)		A= V2/X

Gegeben Gesucht	X (m) T (sec)	V (m/sec) T (sec)	A (m/sec ₂) T (sec)	A (m/sec ₂) V (m/sec)
Distanz X(m)		X= (2/3) * V * T	X= (1/4,5)*A*T2	X= 2 * (V2/A)
Geschwindigkeit V (m/sec)	V= 1,5 * (X/T)		V= (A*T)/3	V= √(A*X)/2
Beschleunigung A (m/sec2)	A= 4,5 * (X/T2)	A= 3 * (V/T)		A= 2 * (V2/X)

Gegeben Gesucht	X (m) T (sec)	V (m/sec) T (sec)	A (m/sec ₂) T (sec)	A (m/sec ₂) V (m/sec)
Distanz X(m)		X= V * T/2	X= (A*T2)/2	X= V2/(2 * A)
Geschwindigkeit V (m/sec)	V= (2 * X)/T		V= A * T	V= √(2 * A)/X
Beschleunigung A (m/sec2)	A= (2 * X)/T2	A= V/T		A= V2/(2 * X)

Kraftformel	
Dynamische Kraft	F _{DYN} = m * a
Reibkraft	$F_R = \mu * F_N$
Normale Kraft	$F_{N} = \cos \alpha * F_{G}$
Gravitationskraft	F _G = m * g

Spitzenkraft $F_{\text{Spitze}} = \max (F_a, F_b, F_c, F_c)$
--

Effektive Kraft
$$F_{RMS} = \sqrt{\frac{Fa^2 * Ta + Fb^2 * Tb + Fc^2 * Tc + Fd^2 * Td}{Ta + Tb + Tc + Td}}$$

	Symbol	Einheit
Schwerkraft	g	9,81 m/s ²
Reibungskoeffizient	μ	
Bewegte Masse	m	kg
Winkel der geneigten Fläche	α	0
Beschleunigungszeit	TA	S
Zeit konstante Geschwindigkeit	Tb	S
Verzögerungszeit	Tc	S
Wartezeit	Td	S

Servoantriebe

Kompakter Servoantrieb - SLVD-N

SLVD-N ist die Familie kompakter digitaler Servoantriebe für bürstenlose Motoren. Neben Positionieranwendungen mit trapezförmigem Profil, elektrischer Welle, elektronischer Kurvenscheibe, Spindelausrichtung, Simulation von Schrittmotor und Momentenregelung verfügt sie über eine SPS, die mit den gängigen Programmiersystemen kommunizieren kann und somit eine vielfältige Nutzung der Ein- und Ausgänge erlaubt. Sie ermöglicht auch die Entwicklung zusätzlicher Konfigurationen zur Ergänzung der Standardfeatures wie z.B. Verstärkungsabgleich des Geschwindigkeits- oder Positionsregelkreises, Momentenüberwachung für Werkzeuge etc.

Modell	Dauerstrom [A]	Spitzenstrom [A]	Baugröße
SLVD1N	1,25	2,5	
SLVD2N	2,5	5	4
SLVD5N	5	10	'
SLVD7N	7	14	
SLVD10N	10	20	2

Intelligenter Servoantrieb Compax 3

Compax3 ist der globale Servoantrieb von Parker Hannifin. Die Antriebsreihe umfasst ein- und mehrachsige Antriebe sowie Hydraulikregler. Der Leistungsbereich reicht dabei von 1 bis 109 kVA.


Die Servoantriebe werden in Deutschland entwickelt und auch dort gefertigt. Als globaler Servoantriebsregler ist Compax3 weltweit verfügbar. Serviceund Supportstandorte befinden sich heute in der Nähe aller wichtigen
Industriestandorte – weltweit. Eine besondere Rolle spielen hierbei die "Parker
Authorised Distribution Partners" – geschultes und erfahrenes Personal aus
Applikation und Support leistet in jeder Situation die erforderliche professionelle
Unterstützung.

Gerät	Stro	m [A]	Versorgung	Leistung	
Compax3	Idauernd	I _{Spitze} (<5 s)	Spannung	[kVA]	
S025V2	2,5	5,5	1 * 230/240 VAC	1,0	
S063V2	6,3	12,6	1 230/240 VAC	2,5	
S100V2	10	20	3 * 230/240 VAC	4,0	
S150V2	15	30	3 230/240 VAC	6,0	
S015V4	1,5	4,5		1,25	
S038V4	3,8	9,0	3 * 400/480 VAC	3,1	
S075V4	7,5	15		6,2	

Software und Tools

Mit der MotionWiz und C3 Servo Manager Konfigurationssoftware können Sie das SLVD-N System und das Compax3 mit nur wenigen Mausklicks konfigurieren. Die Software verfügt über eine einfache, benutzerfreundliche Schnittstelle für schnelle Installation, Optimierung und Diagnose. Um die Konfiguration zu vereinfachen hat die Software eine typische Windows® Benutzeroberfläche mit Dialogfenstern und Werkzeugleisten.

Bestellschlüssel

ETT - Electric Tubular Motor (Komplette Einheit)

	1	2	3	4	5	6	7	8	9
Bestellbeispiel	ETT	032	S1	CS	M	N		С	

Best	tellbeispie	ETT	032	S1	CS	M	N		С	
1	Тур									
•		Electric	Tubula	r Moto	or					
2	Baugröß		Tubulu	ii ivioto	J1					
_	_	ISO 6432 - Durchmesser 25 mm								
		ISO 15552 - Durchmesser 32 mm								
	050	ISO 15552 - Durchmesser 50 mm								
	080	ISO 155	52 - D	urchm	esser 8	30 mm	1			
3	Wicklun	g								
	S1	Seriell, S	Stacklä	inge 1						
		Seriell, S								
		Seriell, S								
		Seriell, S								
_		Seriell, S								
4	Anschlu			_	р					
		Intercon (Springt SinCos	ec EED	DA101	NN000	00002	2000) -	Feedl	oack a	nalog
		Intercon (Springt inkreme	ec EED	DA101	NN000	00002	2000) -	Feedl	oack	
		Intercon (Springt			NN000	00002	2000) -	Feedl	oack B	ISS-C
		Offene E Feedba							-	
		Offene E Feedba							tig -	
		Offene E Feedba							-	
5	Montage	e am Ko	olbens	tange	nende	vorne	/ hin	ten		
		Außeng (M5, ET					TT050), M10,	ETT0	80)
		Innenge (M5, ET				M8, E	TT050), M10,	ETT0	80)
		Außeng (M5, ET			_		TT050), M10,	ETT0	80)
	G	Innenge	winde	/ Inne	ngewir	nde				
		(M5, ETT025, M6, ETT032, M8, ETT050, M10, ETT080) Spezialausführung (kundenspezifische Ausführung - Bitte wenden Sie sich an uns!)								
6	Platzhalter									
		Platzhal	ter							
7	Hub									
		Hubläng Beispiel 12,13,14	30 cm	1 = 030	00. Sie	he Tab	elle au	uf Seite	en	
8	Schutzk									
	С	IP67								
9	Kunden	spezifis	che O	ptione	en					
		Leer für	Stand	ard-M	otoren					

ETT Electric Tubular Motor (nur Kolbenstange)

	1	2	3	4	5
Bestellbeispiel	ETT-R	032	М		

1	Тур	
	ETT-R	ETT Electric Tubular Motor - nur Kolbenstange

2 Baugröße

025	ISO 6432 - Größe 25
032	ISO 15552 - Größe 32
050	ISO 15552 - Größe 50
080	ISO 15552 - Größe 80

3 Montage am Kolbenstangenende vorne / hinten

M	Außengewinde / Endkappe
	(M5, ETT025, M6, ETT032, M8, ETT050, M10, ETT080)
_	/= "

- F Innengewinde / Endkappe (M5, ETT025, M6, ETT032, M8, ETT050, M10, ETT080)
- N Außengewinde / Außengewinde (M5, ETT025, M6, ETT032, M8, ETT050, M10, ETT080)
- G Innengewinde / Innengewinde (M5, ETT025, M6, ETT032, M8, ETT050, M10, ETT080)
- X Spezialausführung (kundenspezifische Ausführung - Bitte wenden Sie sich an uns!)

4 Länge

....... Kolbenstangenlänge in mm, vierstellig.
...... Siehe Tabelle auf Seiten 12,13,14,15 - Spalte
...... "Artikel Nummer Codierung"

5 Kundenspezifische Optionen

Leer für Standard-Motoren

Bestellschlüssel

ETT Electric Tubular Motor (nur Coil)

	1	2	3	4	5	6	7
Bestellbeispiel	ETT-C	032	S1	CS	N	С	

ISO 6432 - Durchmesser 25 mm							
ISO 15552 - Durchmesser 32 mm							
ISO 15552 - Durchmesser 50 mm							
ISO 15552 - Durchmesser 80 mm							
ng							
Seriell, Stacklänge 1							
Seriell, Stacklänge 2							
Seriell, Stacklänge 3							
Seriell, Stacklänge 4							
Seriell, Stacklänge 5							
schluss und Feedbacktyp							
Intercontec Stecker (Springtec EEDA101NN0000002000) - Feedback analog SinCos 1 Vss -							
Intercontec Stecker (Springtec EEDA101NN0000002000) - Feedback inkrementell TTL							
Intercontec Stecker (Springtec EEDA101NN0000002000) - Feedback BISS-C							
Offene Enden, Länge 1 m, Ausgang rückseitig - Feedback analog SinCos 1 Vss - Nur ETT025							
Offene Enden, Länge 2,5 m, Ausgang rückseitig - Feedback analog SinCos 1 Vss - Nur ETT025							
1							

ETT - Motor- und Signalkabel

		1	2	3	4		5	6		7
Bestellbeispiel		ETT-CAP	X	003	PM	-	Y1	SL	-	00
1	1 Kabeltypen									
	ETT-CAP Leistungskabel für ETT									
	ETT-CAS Signalkabel für ETT									
2	Platzhalter									
	Х	Platzhalter								
3		Kabellänge								
	001	1 m								
	003 3 m									
	005 5 m									
	007 7 m									
	010	10 m								
	015	15 m								
	020	20 m								
4		nwendungstyp								
	PM	Hochflexibles Kabel								
5	Stecker	A A A A A A A A A A A A A A A A A A A								
	Y1 Intercontec Y-TECH Stecker - ETT025, ETT032, ETT050									
	Intercontec M23 Stecker - ETT080									
	Χ	Spezialausführung								
6	Antriebsa	Antriebsart								
	SL	SLVD-N An	trieb							
	C3 Compax3									
	63 638 Antrieb									
	IP	IPA Antrieb								
7	Option									
	00	Keine Sond								
		Sonderbau	form i	nach l	Kunde	nzeic	hnun	g		

Antriebs- und Steuerungstechnologien von Parker

Luft- und Raumfahrt

Schlüsselmärkte

Aftermarket-Services Frachtverkehr Motoren Geschäftsflugverkehr und allgemeine Luftfahrt Helikopter Raketenwerfer-Fahrzeuge Militärflugzeuge Energieerzeugung Regionale Transporte Unbemannte Flugzeuge

Schlüsselprodukte

Fluasteuerungssysteme und Antriebskomponenten Motorsysteme und -komponenten Fluidleitungssysteme und -komponenten Fluid-Durchflussmessungs- und Zerstäubungsgeräte Kraftstoffsysteme und -komponenten Inertisierung für Tanksysteme Hydrauliksysteme und -komponenten Wärmemanagement Räder und Bremsen

Kälte-Klimatechnik

Landwirtschaft Klimatechnik Baumaschinen Lebensmittelindustrie Industrielle Maschinen und Anlagen Life Sciences Öl und Gas Präzisionskühlung Prozesstechnik Kältetechnik Transportwesen

Schlüsselprodukte

Akkumulatoren Aktuatoren CO,-Regler Elektronische Steuerungen Filtertrockner Handabsperrventile Wärmetauscher Schläuche und Anschlüsse Druckregelventile Kühlmittelverteiler Sicherheitsventile Pumpen Magnetventile Thermostatische Expansionsventile

Elektromechanik

Luft- und Raumfahrt

Industrielle Automation Life Science und Medizintechnik Werkzeugmaschinen Verpackungsmaschinen Paniermaschinen Kunststoffmaschinen und Materialumformung Metallgewinnung Halbleiter und elektronische Industrie Textilindustrie Draht und Kabel

Schlüsselprodukte

AC/DC-Antriebe und -Systeme Elektromechanische Aktuatoren. Handhabungssysteme und Führungen Elektrohydrostatische Antriebssysteme Elektromechanische Antriebssysteme Bediengeräte Linearmotoren Schrittmotoren, Servomotoren, Antriebe und Profile

Filtration

Schlüsselmärkte

Luft- und Raumfahrt Lebensmittelindustrie Anlagen und Ausrüstung für die Industrie Life Sciences Schifffahrt Mobile Ausrüstung Öl und Gas Stromerzeugung und erneuerbare Energien Prozesstechnik Transportwesen Wasserreinigung

Schlüsselprodukte

Analytische Gaserzeuger Druckluftfilter und Trockner Motorsaugluft-, Kühlmittel-, Kraftstoff- und Ölfilterungssysteme Systeme zur Überwachung des Flüssigkeitszustands Hydraulik- und Schmiermittelfilter Stickstoff-, Wasserstoff- und Null-Luft-Generatoren Instrumentenfilter Membran- und Faserfilter Mikrofiltration Sterilluftfiltration Wasserentsalzung, Reinigungsfilter und -systeme

Fluidtechnik

Schlüsselmärkte

Hebezeuge Landwirtschaft Chemie und Petrochemie Baumaschinen Lebensmittelindustrie Kraftstoff- und Gasleitung Industrielle Anlagen Life Sciences Schifffahrt Bergbau Mobile Ausrüstung Öl und Gas Erneuerbare Energien Transportwesen

Schlüsselprodukte

Rückschlagventile Verbindungstechnik für Niederdruck Fluid-Leitungssysteme Versorgungsleitungen für Tiefseebohrungen Diagnoseausrüstung Schlauchverbinder Schläuche für industrielle Anwendungen Ankersysteme und Stromkabel PTFE-Schläuche und -Rohre Schnellverschlusskupplungen Gummi- und Thermoplastschläuche Rohrverschraubungen und Adapter Rohr- und Kunststoffanschlüsse

Hydraulik

Hebezeuge

Schlüsselmärkte

Landwirtschaft Alternative Energien Baumaschinen Forstwirtschaft Industrielle Anlagen Werkzeugmaschinen Schifffahrt Materialtransport Bergbau Öl und Gas Energieerzeugung Müllfahrzeuge Erneuerbare Energien LKW-Hvdraulik Rasenpflegegeräte

Schlüsselprodukte

Akkumulatoren Einbauventile Elektrohydraulische Antriebe Bediengeräte Hybridantriebe Hydraulik-Zylinder Hydraulik-Motore und -Pumpen Hydrauliksysteme Hydraulikventile & -steuerungen Hydrostatische Steuerung Integrierte Hydraulikkreisläufe Nebenantriebe Antriebsaggregate Drehantriebe

Pneumatik

Luft- und Raumfahrt
Förderanlagen und Materialtransport
Industrielle Automation
Life Science und Medizintechnik Werkzeugmaschinen Verpackungsmaschinen Transportwesen & Automobilindustrie

Schlüsselprodukte Druckluft-Aufbereitung

Messinganschlüsse und -ventile Verteilerhlöcke Pneumatik-Zubehör Pneumatik-Antriebe und -Greifer Pneumatik-Ventile und -Steuerungen Schnellverschluss-Kupplungen Drehantriebe Gummi, Thermoplastschläuche und Anschlüsse

Profile Thermoplastrohre und -anschlüsse Vakuumerzeuger, -sauger und -sensoren

Prozesssteuerung

Schlüsselmärkte

Alternative Kraftstoffe Biopharmazeutika Chemische Industrie und Raffinerien Lebensmittelindustrie Marine und Schiffsbau Medizin und Zahntechnik Mikro-Elektronik Nuklearenergie Offshore-Ölförderung Öl und Gas Pharmazeutika Energieerzeugung Zellstoff und Papier

Wasser/Abwasser

Schlüsselprodukte

Analysegeräte

Produkte und Systeme zur Bearbeitung analytischer Proben Anschlüsse und Ventile zur chemischen

Injektion Anschlüsse, Ventile und Pumpen für die Leitung von Fluorpolymeren

Anschlüsse, Ventile, Regler und digitale Durchflussregler für die Leitung hochreiner

Industrielle Mengendurchflussmesser/-regler Permanente nicht verschweißte Rohrverschraubungen

Industrielle Präzisionsrealer und Durchflussrealer Doppelblock- und Ablassventile für die

Anschlüsse, Ventile, Regler und Mehrwegeventile für die Prozesssteuerung

Dichtung & Abschirmung

Luft- und Raumfahrt Gebrauchsgüter Fluidtechnik Industrie allgemein Informationstechnologie Life Sciences Mikro-Elektronik Militär Öl und Gas Energieerzeugung Erneuerbare Energien Telekommunikation Transportwesen

Schlüsselprodukte Dynamische Dichtungen

Elastomer-O-Ringe Entwicklung und Montage von elektromedizinischen Instrumenten EMV-Abschirmung Extrudierte und präzisionsgeschnittene/gefertigte Elastomerdichtungen Hochtemperatur-Metalldichtungen

Homogene und eingefügte Elastomerformen Fertigung und Montage von medizinischen Metall- und Kunststoff- Verbundstoff- Dichtungen

Abgeschirmte optische Fenster Wärmeleitmaterialien Schwingungsdämpfer

Parker weltweit

Europa, Naher Osten, **Afrika**

AE - Vereinigte Arabische Emirate, Dubai

Tel: +971 4 8127100 parker.me@parker.com

AT - Österreich, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT - Osteuropa, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ - Aserbaidschan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU - Belgien, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BG - Bulgarien, Sofia Tel: +359 2 980 1344 parker.bulgaria@parker.com

BY - Weißrussland, Minsk Tel: +48 (0)22 573 24 00 parker.poland@parker.com

CH - Schweiz, Etoy. Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ - Tschechische Republik, Klecany

Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE - Deutschland, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Dänemark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - Spanien, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI - Finnland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR - Frankreich, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Griechenland, Athen Tel: +30 210 933 6450 parker.greece@parker.com

HU - Ungarn, Budaörs Tel: +36 23 885 470 parker.hungary@parker.com

IE - Irland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT - Italien, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ - Kasachstan, Almaty Tel: +7 7273 561 000 parker.easteurope@parker.com

NL - Niederlande, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO - Norwegen, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL - Polen. Warschau Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT - Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO - Rumänien, Bukarest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russland, Moskau Tel: +7 495 645-2156 parker.russia@parker.com

SE - Schweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK - Slowakei, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL - Slowenien, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR - Türkei, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA - Ukraine, Kiew Tel: +48 (0)22 573 24 00 parker.poland@parker.com

UK - Großbritannien, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

ZA - Republik Südafrika, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

Nordamerika

CA - Kanada, Milton, Ontario Tel: +1 905 693 3000

US - USA, Cleveland Tel: +1 216 896 3000

Asien-Pazifik

AU - Australien, Castle Hill Tel: +61 (0)2-9634 7777

CN - China, Schanghai Tel: +86 21 2899 5000

HK - Hong Kong Tel: +852 2428 8008

IN - Indien, Mumbai Tel: +91 22 6513 7081-85

JP - Japan, Tokyo Tel: +81 (0)3 6408 3901

KR - Korea, Seoul Tel: +82 2 559 0400

MY - Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ - Neuseeland, Mt Wellington Tel: +64 9 574 1744

SG - Singapur Tel: +65 6887 6300

TH - Thailand, Bangkok Tel: +662 186 7000

TW - Taiwan, Taipei Tel: +886 2 2298 8987

Südamerika

AR - Argentinien, Buenos Aires Tel: +54 3327 44 4129

BR - Brasilien, Sao Jose dos Campos Tel: +55 800 727 5374

CL - Chile, Santiago Tel: +56 2 623 1216

MX - Mexico, Toluca Tel: +52 72 2275 4200

Europäisches Produktinformationszentrum Kostenlose Rufnummer: 00 800 27 27 5374 (von AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

Technische Änderungen vorbehalten. Daten entsprechen dem technischen Stand zum Zeitpunkt der Drucklegung. © 2015 Parker Hannifin Corporation. Alle Rechte vorbehalten.

Parker Hannifin GmbH

Pat-Parker-Platz 1 41564 Kaarst

Tel.: +49 (0)2131 4016 0 Fax: +49 (0)2131 4016 9199 parker.germany@parker.com www.parker.com

190-571001N4

Juni 2015